心隨著海浪四處奔馳飛揚:眼、耳、鼻、舌、身五識,如同海浪般打在第六意識上,不斷地想要獲取意識的注意,如礁石般的第六意識激起壯麗燦爛的色彩。
對第六識來講,五識、五蓋、五毒,只是接觸境界而產生的,一切是真實的顯現,去研究它還不如去接受它。
再上一層來看,一旦接受卻不受影響,就可慢慢脫離影響了,終有一天,會成為觀看的過客般,在天空下,大地上,整個身心投入讚嘆海浪與礁石激起的耀眼浪花,卻不會真正投入到浪花中。
2015年10月24日 星期六
2015年10月20日 星期二
2015年10月19日 星期一
▼現在是過去,現在是未來。
注重根源,根源微細且抽象。防患未然,過去是現在的因,現在是未來的因。
但,一直守著過去,空想未來,等時間到了,該怎樣還是怎樣。
必須趁現在,以過去的經驗,一步步鋪好未來的走向,儘量以水到渠成的大勢,減少因過去漏失細節而造成未來產生的錯誤。
但,一直守著過去,空想未來,等時間到了,該怎樣還是怎樣。
必須趁現在,以過去的經驗,一步步鋪好未來的走向,儘量以水到渠成的大勢,減少因過去漏失細節而造成未來產生的錯誤。
2015年10月6日 星期二
▼ANQ 2015 台北亞洲品質大會-睿地可靠度論壇(REDI Forum) - Powered by Discuz!
請參考(圖多,加載速度會稍微慢)品質知識社群(QKC)資訊交流平台ANQ Congress 2015 Taipei 相片簿 - Powered by Discuz!
ANQ Congress 2015 Taipei 相片簿
http://redi.org.tw/forum.php?mod=viewthread&tid=676&fromuid=4469
如果可以的話,希望能有機會去参加看看。
ANQ Congress 2015 Taipei 相片簿
http://redi.org.tw/forum.php?mod=viewthread&tid=676&fromuid=4469
如果可以的話,希望能有機會去参加看看。
▼人生與哲學是二而一的,
人生與哲學是二而一的,比如說:看見了偷盜,便去思考為何,是政府施政不當,是社會文化促使,是個人墮落。
看見老、病、死。問人一生的意義,眾生最後的願望是什麼。
學會問問題是哲學的根。
看見老、病、死。問人一生的意義,眾生最後的願望是什麼。
學會問問題是哲學的根。
2015年10月5日 星期一
▼書名:直觀式數學。讀後感。
書名:直觀式數學;作者:烟村洋太郎;出版社:漢湘文化。
以下是讀後心得,有興趣者,可去找這本書來看。
1.前言貫穿本書:
(1)數學是意義簡化的流程,正如文字與圖在溝通中會簡化。因此不管是初學者或教授在看數學符號時,必先知道此符號是縮短意義後的簡寫,用途是簡化溝通、正確記錄。
(2)愈是以單純觀點看世界的人,愈對數學的符號運算會有困擾。例如:3顆蘋果+3顆橘子,合計幾顆,簡化成數學式:3+3=6。 但是單純的人就怎麼也搞不懂,3顆蘋果加3顆橘子,為什麼會等於6顆?蘋果是蘋果,橘子是橘子,怎能相加呢?因此只能用強記的方式去記此符號的意義。 但是,隨著符號所簡化的意涵愈來愈廣,乃至多個符號組成一個符號,就必須要求學習的人,是必須真正明瞭每一個符號簡化前所涵蓋的意義。
(3)例如:蘋果=2,橘子=3,3根香蕉=6,3顆蘋果+3顆橘子+1根香蕉,合計多少?蘋果為什麼等於2?橘子為什麼等於3?3根香蕉=6??加起來???好難喔!!!
(4)小學還能靠父母因材施教,讓小朋友能瞭解數學符號與現實溝通的關係,但中學後,不是每個導師都能因材施教。
(5)30+30+30+20+20+20改寫成(30X3)+(20X3)改寫成30X3+20X3改寫成(30+20)X3。
這樣到底有什麼意義?這樣的寫法本身並沒有意義。
然而,沒有意義這件事,在數學的領域卻很重要。
數學的用意,就是脫離現實世界的意義,進入抽象世界的形式,離開意義,才能以簡馭繁,不受具體事物的表象影響,無論事物有多麼交錯繁雜,只要使用適當的數學式,就能將具體的事物鉅細靡遺以抽象的形式,持續的推演下去,演化得到最終結果。
(6)數學在教導中,是需要嘗試去瞭解被教導的人,腦中是如何理解的,而不是說:「要這麼做」、「要這麼想」、「這樣就可以正確快速解出」、「這樣做很有趣哦」、「很開心哦」、「很重要哦」,這樣只會令人感到無聊厭煩。就算你自己教得很開心,覺得很重要,被教導的人的頭腦思想也不會跟你一樣轉向思考的。
2.序章:
問問題:
1.為何數學要使用符號紀錄?因為若是能將腦中的想法改換成記號,就能將自己腦中所想的事與別人共同理解、分享、體驗、擁有。 當然記號僅僅也是人想出來溝通的方式之一,不用記號,用圖形,用文字,用比手畫腳,只要可以讓別人正確瞭解的溝通方式,都是可以使用的。
2.因此數學是科學之母,從本質上來看,數學演算從比手畫腳、文字、畫圖、簡化符號等,不一定限定要用哪一種方式才是正確的方式,只要溝通的雙方都覺得可以理解,自然而然地會往數學簡化符號運算的方向進行下去。
3.數字有感覺嗎?每個人對數字在大腦中產生的連結不同,就會有感覺好的數字,感覺幸運的數字,感覺耀眼的數字,感覺好聽的數字,感覺幸福的數字等。
4.每一個數字裡,都有與其他的數字融洽的部分,比如說12跟18他們之間的關係,就會比13跟17的關係要好,51由17個3組成,24由8個3組成,雖然51跟24有時候會吵架,但是在3這個地方卻能相處得很愉快。 把數字比作人的話,那這個人他與其他人好相處嗎,就要看質因數分解後,能夠找到與其他人的相同部分,融洽的多寡來決定。
5.等號是什麼?是變成的意思,等號兩端是由某個東西因給了某個動作而變成了我們最後所能看到的東西。
6.加法是兩個東西結合而變成某個樣子,所以我們想得到和,加法簡稱和。
7.乘法是某個東西累積幾次而變成某個樣子,所以我們想得到積,乘法簡稱積。
8.減法是兩個東西的比較差別而變成的,所以我們想得到差,減法簡稱差。
9.除法是某個東西分離幾次而變成某個樣子,還有兩者互相比較,看差別在那的意思,最後得到某個東西與其他東西相比的價值,所以我們想得到商,除法簡稱商。
10.分數是除法與乘法的另個顯示的樣子,由於現實社會都是直觀的整數,小數的數字又是很長,小數用放大鏡後用除法變成整數,但最後變成的東西,還須將放大鏡拿開,這樣才是現實真正的樣子。
11.平方是某個東西想升級自己,變成更高層次的樣子,平方不是加法與乘法,而是可以從線長變成面積,甚至變成體積的方式。
12.負數是某個東西想快速翻轉自己目前的樣子,不想跟加法減法一樣,用走的慢慢改變,想快速改變自己到另一邊。
以下是讀後心得,有興趣者,可去找這本書來看。
1.前言貫穿本書:
(1)數學是意義簡化的流程,正如文字與圖在溝通中會簡化。因此不管是初學者或教授在看數學符號時,必先知道此符號是縮短意義後的簡寫,用途是簡化溝通、正確記錄。
(2)愈是以單純觀點看世界的人,愈對數學的符號運算會有困擾。例如:3顆蘋果+3顆橘子,合計幾顆,簡化成數學式:3+3=6。 但是單純的人就怎麼也搞不懂,3顆蘋果加3顆橘子,為什麼會等於6顆?蘋果是蘋果,橘子是橘子,怎能相加呢?因此只能用強記的方式去記此符號的意義。 但是,隨著符號所簡化的意涵愈來愈廣,乃至多個符號組成一個符號,就必須要求學習的人,是必須真正明瞭每一個符號簡化前所涵蓋的意義。
(3)例如:蘋果=2,橘子=3,3根香蕉=6,3顆蘋果+3顆橘子+1根香蕉,合計多少?蘋果為什麼等於2?橘子為什麼等於3?3根香蕉=6??加起來???好難喔!!!
(4)小學還能靠父母因材施教,讓小朋友能瞭解數學符號與現實溝通的關係,但中學後,不是每個導師都能因材施教。
(5)30+30+30+20+20+20改寫成(30X3)+(20X3)改寫成30X3+20X3改寫成(30+20)X3。
這樣到底有什麼意義?這樣的寫法本身並沒有意義。
然而,沒有意義這件事,在數學的領域卻很重要。
數學的用意,就是脫離現實世界的意義,進入抽象世界的形式,離開意義,才能以簡馭繁,不受具體事物的表象影響,無論事物有多麼交錯繁雜,只要使用適當的數學式,就能將具體的事物鉅細靡遺以抽象的形式,持續的推演下去,演化得到最終結果。
(6)數學在教導中,是需要嘗試去瞭解被教導的人,腦中是如何理解的,而不是說:「要這麼做」、「要這麼想」、「這樣就可以正確快速解出」、「這樣做很有趣哦」、「很開心哦」、「很重要哦」,這樣只會令人感到無聊厭煩。就算你自己教得很開心,覺得很重要,被教導的人的頭腦思想也不會跟你一樣轉向思考的。
2.序章:
問問題:
1.為何數學要使用符號紀錄?因為若是能將腦中的想法改換成記號,就能將自己腦中所想的事與別人共同理解、分享、體驗、擁有。 當然記號僅僅也是人想出來溝通的方式之一,不用記號,用圖形,用文字,用比手畫腳,只要可以讓別人正確瞭解的溝通方式,都是可以使用的。
2.因此數學是科學之母,從本質上來看,數學演算從比手畫腳、文字、畫圖、簡化符號等,不一定限定要用哪一種方式才是正確的方式,只要溝通的雙方都覺得可以理解,自然而然地會往數學簡化符號運算的方向進行下去。
3.數字有感覺嗎?每個人對數字在大腦中產生的連結不同,就會有感覺好的數字,感覺幸運的數字,感覺耀眼的數字,感覺好聽的數字,感覺幸福的數字等。
4.每一個數字裡,都有與其他的數字融洽的部分,比如說12跟18他們之間的關係,就會比13跟17的關係要好,51由17個3組成,24由8個3組成,雖然51跟24有時候會吵架,但是在3這個地方卻能相處得很愉快。 把數字比作人的話,那這個人他與其他人好相處嗎,就要看質因數分解後,能夠找到與其他人的相同部分,融洽的多寡來決定。
5.等號是什麼?是變成的意思,等號兩端是由某個東西因給了某個動作而變成了我們最後所能看到的東西。
6.加法是兩個東西結合而變成某個樣子,所以我們想得到和,加法簡稱和。
7.乘法是某個東西累積幾次而變成某個樣子,所以我們想得到積,乘法簡稱積。
8.減法是兩個東西的比較差別而變成的,所以我們想得到差,減法簡稱差。
9.除法是某個東西分離幾次而變成某個樣子,還有兩者互相比較,看差別在那的意思,最後得到某個東西與其他東西相比的價值,所以我們想得到商,除法簡稱商。
10.分數是除法與乘法的另個顯示的樣子,由於現實社會都是直觀的整數,小數的數字又是很長,小數用放大鏡後用除法變成整數,但最後變成的東西,還須將放大鏡拿開,這樣才是現實真正的樣子。
11.平方是某個東西想升級自己,變成更高層次的樣子,平方不是加法與乘法,而是可以從線長變成面積,甚至變成體積的方式。
12.負數是某個東西想快速翻轉自己目前的樣子,不想跟加法減法一樣,用走的慢慢改變,想快速改變自己到另一邊。
2015年10月2日 星期五
▼沃頓知識線上-好習慣可以提升幸福感
引用自沃頓知識線上-好習慣可以提升幸福感
多睡會。不拖延。多省錢。吃得更健康。我們許多人希望能夠改變自己的習慣,但通常發現難以打破現有的習慣,形成新的習慣。在暢銷書作者格雷琴·魯賓(Gretchen Rubin)的新書《提升:如何管理我們的日常習慣》(Better Than Before: Mastering the Habits of Our Everyday Lives)中,她解釋了為什麼習慣可以讓我們過得更加幸福。最近,在魯賓來到沃頓商學院擔任沃頓名家系列(Authors@Wharton)的特約講師期間,沃頓商學院市場行銷學教授凱西·莫吉納(Cassie Mogilner )對她進行了採訪。
以下是經過編輯的訪談內容。
.
.
.
.
.
.
莫吉納:你最希望讀者們能夠從這本書中學到什麼?
魯賓:沒有什麼放諸四海皆准的解決方案。人們常常告訴我們:“只有這樣做或那樣做才能成功。這是一種神奇的解決方案。”有些方法有時候會適合於一些人。但沒有什麼方法可以時時刻刻適用於所有人。甲之蜜糖乙之砒霜。你必須先瞭解自己。有些事情相當簡單,比如說:“你是喜歡早睡早起的人還是喜歡晚睡晚起的人?” 即使如此,在你分析自己後,你就可以培養適合於自己的習慣。這樣才能幫助人們取得成功。我們之所以洩氣,是因為我們努力過但失敗了。但通常情況下,我們並沒有為成功做好準備,因為我們並沒有樹立適合於自身本性、價值觀和興趣的習慣。只要能做到這點,那麼我們就可以有更大的空間,能夠讓我們取得成功。
多睡會。不拖延。多省錢。吃得更健康。我們許多人希望能夠改變自己的習慣,但通常發現難以打破現有的習慣,形成新的習慣。在暢銷書作者格雷琴·魯賓(Gretchen Rubin)的新書《提升:如何管理我們的日常習慣》(Better Than Before: Mastering the Habits of Our Everyday Lives)中,她解釋了為什麼習慣可以讓我們過得更加幸福。最近,在魯賓來到沃頓商學院擔任沃頓名家系列(Authors@Wharton)的特約講師期間,沃頓商學院市場行銷學教授凱西·莫吉納(Cassie Mogilner )對她進行了採訪。
以下是經過編輯的訪談內容。
.
.
.
.
.
.
莫吉納:你最希望讀者們能夠從這本書中學到什麼?
魯賓:沒有什麼放諸四海皆准的解決方案。人們常常告訴我們:“只有這樣做或那樣做才能成功。這是一種神奇的解決方案。”有些方法有時候會適合於一些人。但沒有什麼方法可以時時刻刻適用於所有人。甲之蜜糖乙之砒霜。你必須先瞭解自己。有些事情相當簡單,比如說:“你是喜歡早睡早起的人還是喜歡晚睡晚起的人?” 即使如此,在你分析自己後,你就可以培養適合於自己的習慣。這樣才能幫助人們取得成功。我們之所以洩氣,是因為我們努力過但失敗了。但通常情況下,我們並沒有為成功做好準備,因為我們並沒有樹立適合於自身本性、價值觀和興趣的習慣。只要能做到這點,那麼我們就可以有更大的空間,能夠讓我們取得成功。
訂閱:
文章 (Atom)